Modern Fixing Technology

State-of-the-Art

APPLICATIONS FOR FASTENINGS

Fastening of non-structural components **fischer components**

Beam Bearings and Column Base Plates

Bridge Footings

Fastening in Powerplant

Quelle: P. Carrato, Bechtel

Seismic retrofitting

FASTENING SYSTEMS – Post-installed anchors

Expansion anchor

Expansion anchors transfer tension load to the concrete mainly by friction.

Undercut anchors transfer tension load mainly through mechanical interlock.

Bonded anchors transfer tension load by bond stresses.

Bonded expansion anchors

Concrete screws

- combination of bond and friction to transfer tension loads
- work well in cracked concrete

- load transfer is by mechanical interlock
- simple installation

Rail and balustarde -

Problem:

small edge distances causes concrete edge

Wrong installitions should be avoided by better training (certification) of the installer and proper supervision

- damaged group with 4 anchors
- after failure of the first anchor, overloading of the neighboring anchor

Problem:

small spacing distances will reduce the load capacity – concrete failure will occure (prayout)

Boston tunnel

On July 10, 2006 concrete ceiling tiles in the Interstate 90 tunnel fell on a car killing one person and injuring another.

Collapse Sequence

M2

0

Collapse Sequence

M2

Collapse Sequence

Pull out test on site

Pull out test's on site are a common practice

but

Pull out test's are not replacing a proper anchor or rebar design!

- Especially rebar pull out test are misleading!
- single rebar's!
- no test of the full system!
- with shallow embedment depth ultimate loads can be easily
- reached!

Pull out tests are essential:

- To verify the anchor behavior in unknown building materials (e.g.
 - masonry and concrete with unknown compressive strength)
- Check of workmanship

Recommended or Design Loads can be calculated from these tests!

NEVER USE THE ULTIMATE TEST VALUES FOR DESIGN

Prediction of mean failure load

Design example: T16 Yield strength 460N/mm^2 (design load 80.4kN) Ultimate bond strength – 18N/mm^2

Design with ultimate bond strength:

 $h_{ef} = \frac{N_{Rd,s}}{\pi * d * f_b} = \frac{80.4kN}{\pi * 16mm * 18N / mm^2} = 89mm$ 5.6xd

Design with design bond strength:

$$h_{ef} = \frac{N_{Rd,s}}{\pi * d * f_b} = \frac{80.4kN}{\pi * 16mm * 7.7N / mm^2} = 208mm$$
 13xd

Design according EC2

$$h_{ef} = \frac{N_{Rd,s}}{\pi * d * f_b} = \frac{80.4kN}{\pi * 16mm * 2.3N / mm^2} = 695mm$$
 43xd

Fasteners must function properly in the required application.

Pre-qualification testing is necessary

- check of suitability of anchors
- evaluation of allowable conditions of use

European Organisation for Technical Approvals

European Technical Approval Guideline - Test - Design

European Technical Approval

ETAG 001- Metal Anchors for use in Concrete

Part 1	- anchors in general
Part 2	- torque-controlled expansion anchors
Part 3	- undercut anchors
Part 4	- deformation-controlled expansion anchors
Part 5	- bonded anchors
Part 6	 anchors for lightweight systems
Annex A	- details of tests
Annex B	- tests for admissible service conditions
	detailed information
Annex C	- design methods for anchorages

+ Comprehension Documents/Technical Reports

European Technical Approval ETA-05/0164

English translation prepared by DIBt - Original version in German language

Handelsbezeichnung	fischer Highbond-Anker FHB II
Trade name	fischer Highbond-Anchor FHB II
Zulassungsinhaber	fischerwerke
Holder of approval	Artur Fischer GmbH & Co. KG
	79211 Denzlingen
Zulassungsgegenstand und Verwendungszweck	Kraftkontrolliert spreizender Verbunddübel mit Ankerstange aus galvanisch verzinktem Stahl in den Größen M8, M10, M12, M16, M20 und M24 zur Verankerung im Beton
Generic type and use of construction product	Torque controlled bonded anchor with anchor rod made of galvanised steel of sizes M8, M10, M12, M16, M20 and M24 for use in concrete
Geltungsdauer: vom	7. September 2005
bis to	7. September 2010
Herstellwerke	fischerwerke Herstellwerke 1 und 2, Deutschland
Manufacturing plants	fischerwerke Herstellwerk 3, Tschechien

Diese Zulassung umfasst This Approval contains 17 Seiten einschließlich 9 Anhänge 17 pages including 9 annexes

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Approvals:

In many countries approvals are no topic.

That's a failure because approvals guarantee:

are different standard because of the lots of tests which required to get an approval

Constant controll of production

They show quality !

Schock approval by the Federal Office for Civil Defence, Bonn

Failure under tension load

Failure under shear load

Break-out body under tensile load

The diameter of the break-out body on the member surface is approx. 3 x anchorage depth h_{ef}.

$$N_{Rk,c}^{0} = 7,2 * \sqrt{f_{ck,cube}} * h_{ef}^{1,5}$$

Characteristic ressistance for expansion anchors for cracked concrete. (for non cracked concrete multiply by 1,4)

The concrete cone failure loads can be predicted with sufficient accuracy by the CC-Method.

Characteristic spacing and edge distance

 Base material (building material)

e.g. concrete

cracked concrete

or

non cracked concrete

concrete strength

What is cracked concrete? **CRACKED CONCRETE**

There is a high probability that fasteners installed in non-cracked concrete will be located in a crack when cracks form.

CRACKED CONCRETE

Anchors installed in uncracked concrete: Location to cracks

KI'-

Influence of cracks on the ultimate load of fully expanded hammerset anchors under axial tension load /5/

Displacement [mm]

BONDED ANCHORS

BONDED EXPANSION ANCHORS

BONDED EXPANSION ANCHORS

Most popular.

Bonded Anchors

Table 15: Characteristic values to tension load reinforcing bars

Size	Ød	8	10	12	14	16	18	20	22	24	25	26	28	30	32	36	40
Steel failure																	
Characteristic resistance reinforcing bars ⁵⁾	N _{Rk,s} [kN]	28	44	63	85	111	140	173	209	249	270	292	339	389	443	560	691
Partial safety factor	Υ _{Ms,N} ¹⁾ [-]	1,4															
Combined pullout and concrete cone failure																	
Diameter for calculation	d [mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	36	40
Characteristic bond resistance in non-cracked concrete C20/25																	
Temperature range ⁴⁾ (60°C / 35°C)	τ _{Rk.ucr} [N/mm²]	16	15	15	14	14	14	13	13	13	13	13	13	12	12	12	12
Temperature range II ⁴⁾ (72°C / 50°C)	τ _{яk,ucr} [N/mm²]	13	12	12	12	11	11	11	11	11	10	10	10	10	10	9,5	9,5
Characteristic bond resistance in cracked concrete C20/25																	
Temperature range 1 ⁴⁾ (60C / 35°C)	$\tau_{_{Rk,or}}$ [N/mm ²]	7	7	7	7	7	7	7	7	7	7	7	7	7	5	5	5
Temperature range II ⁴⁾ (72°C / 50°C)	$ au_{_{Rk,or}}$ [N/mm ²]	6	6	6	6	6	6	6	6	6	6	6	6	6	4	4	4

Table 13: Design method A, Characteristic tension load values

		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø26	Ø28	Ø30	Ø32
Steel failure rebar												
Characteristic tension resistance for rebar BSt 500 S acc. to DIN 488 ¹⁾	N _{Rk,s} [kN]	28	43	62	85	111	173	270	-	339	-	442
Partial safety factor for rebar BSt 500 S acc. to DIN 488 ²⁾ ^{YMs,N}							1,4					
Combined Pull-out and Concrete cone failure 4)												
Diameter of rebar	d [mm]	8	10	12	14	16	20	25	26	28	30	32
Characteristic bond resistance in non-cracked concrete C20/25												
Temperature range I ⁵⁾ : 40°C/24°C	τ _{Rk,ucr} [N/mm²]	15	15	15	14	14	14	13	13	13	13	13
Temperature range II ⁵⁾ : 58°C/35°C	τ _{Rk,ucr} [N/mm²]	12	12	12	12	11	11	11	11	10	10	10
Temperature range III ⁵⁾ : 70°C/43°C	τ _{Rk,ucr} [N/mm²]	7	7	7	7	7	6,5	6,5	6,5	6	6	6

Competitor

Fischer

FIS EM

Factors influencing the strength of bonded anchors

- Drilling method
- Hole cleaning
- Mixing
- Installation in wet concrete
- Submerged installation
- Hole orientation

- Temperature
- Freeze/thaw
- Chemicals (alkalinity)
- Sustained loading
- Fatigue, seismic
- Fire
- Cracked concrete

Influence is product dependent: Prequalification is necessary

Anchor design easy..... COMPUFIX 8.4

- free download
- ask for installation
- free training session

Connecting new and existing buildings using post-installed rebars

Strengthening with postinstalled rebar connections

Adding new columns

Source: 1) (Hilti)

Strengthen columns

Flashing Boxes with Stirrups

Post-Installed Bonded Rebar Connection

Source: 1) Kunz, Cook, Fuchs, Spieth (1998)

Load transfer

Anchor theory

- Ioad transfer via tensile strength of concrete
- consideration of edge distance and spacing
- maximum anchorage length 4 - 20 d_s (ETAG)
- design
 - ETAG 001 Annex C / TR 029
- → Failure modes
 - pull-out
 - concrete cone
 - steel
 - splitting

Load transfer

Rebar theory

- Ioad transfer via existing reinforcement
- consideration of existing reinforcement
- minimum concrete cover (2 cm 5 cm)
- consideration of development length and lap splic
- → minimum development length: 10 15 d_s
- → maximum development length: up to 70 d_s
- → design acc. to structural concrete codes
 - Eurocode 2
 - DIN 1045-1
 - ACI 318
 - BS 8110 (1 April 2010 EC2 is taking over)
- ➔ failure modes
 - steel
 - splitting?

cast-in

post-installed

- Iap splice with existing reinforcement
- Iap length must be sufficient
- → permissible application

cast-in

post-installed

- Iap splice with existing reinforcement
- Iap length must be sufficient
- → permissible application

- existing structure with reinforcement
- *without* transverse reinforcement allowed for rebars with $d_s \le 14$ mm
- *with* transverse reinforcement allowed for all rebar diameters
- normissible annlication

Design as simple beam

- development length of bottom reinforcement ≥ 10 d_s
- concrete compression struts prevent concrete cone failure of the bottom reinforcement
- constructional anchoring of the top reinforcement
- → permissible application

Influence of Hole Cleaning

Injection Tools

Standard injection tool

Newly developed injection tool

Use of special injection tool which is optimized to the drilling diameter

Rebar design easy..... Rebarfix

- free download
- ask for installation
- free training session

SUMMARY

- Modern fastening technique is increasingly used in the building industry.
- New and innovative fastening systems have been developed.
- Reliable design methods have been incorporated in design guides.
- However, fastenings are currently often not used in practice with the same confidence as other connections (e.g. welding), mainly because the training of designers and especially installers is too poor.

It is believed that by improving the training of designers and installers the field of application of modern fastening technique will be expanded.

How fischer tries to eliminate fixing failure:

- Specification advice to evaluate anchors' suitability
- Installation Training to eliminate installation errors
- **Site testing** to confirm anchors' suitability or correct installation